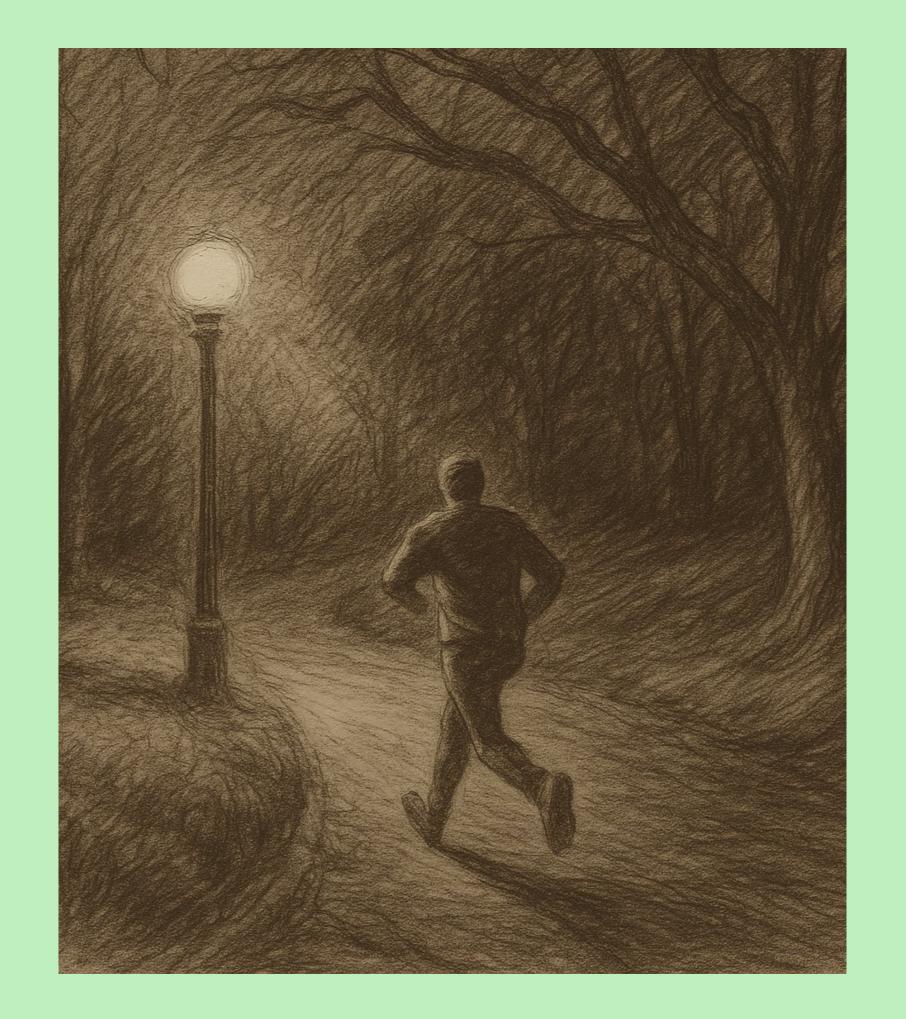

Dark Sky Overlay Plan

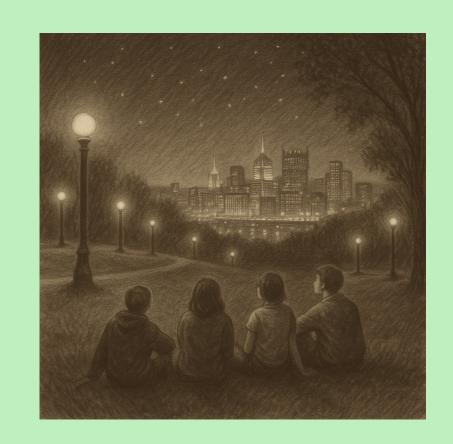
Overview

- I The Problem
- II Research
- III Project Goal
- IV Site Selection
- V Design
- VI Lessons Learned
- VII References


Section

The Problem

Section: I Pinero-Jacome


Mhy?

Schenley Is Already Beloved— What If It Also Became A Place To Experience ____?

Section: I

Natural Darkness Is Vanishing: And With It, Countless Memories

In cities like Pittsburgh, artificial lighting has overrun the night. Schenley Park, while a beloved urban refuge, is no exception. Light pollution washes out the stars, disrupts local ecosystems, and robs residents of powerful nighttime experiences. Despite being a green space, the park offers little access to the sky's full potential.

80%

of Americans have never seen the Milk Way 55%

of people have never heard the term "light pollution" 80%

of word population lives under skyglow

Section

Research

To understand the broader context of why darkness matters and how it's disappearing from urban life. This helped ground the project in both ecological and human-centered terms.

To understand the broader context of why darkness matters and how it's disappearing from urban life. This helped ground the project in both ecological and human-centered terms.

What we're losing in the dark:

- Ecological rhythms
- Biodiversity

To understand the broader context of why darkness matters and how it's disappearing from urban life. This helped ground the project in both ecological and human-centered terms.

What we're losing in the dark:

- Ecological rhythms
- Biodiversity

The human need for night

• Health necessity

B

• Passive pleasure

To understand the broader context of why darkness matters and how it's disappearing from urban life. This helped ground the project in both ecological and human-centered terms.

What we're losing in the dark:

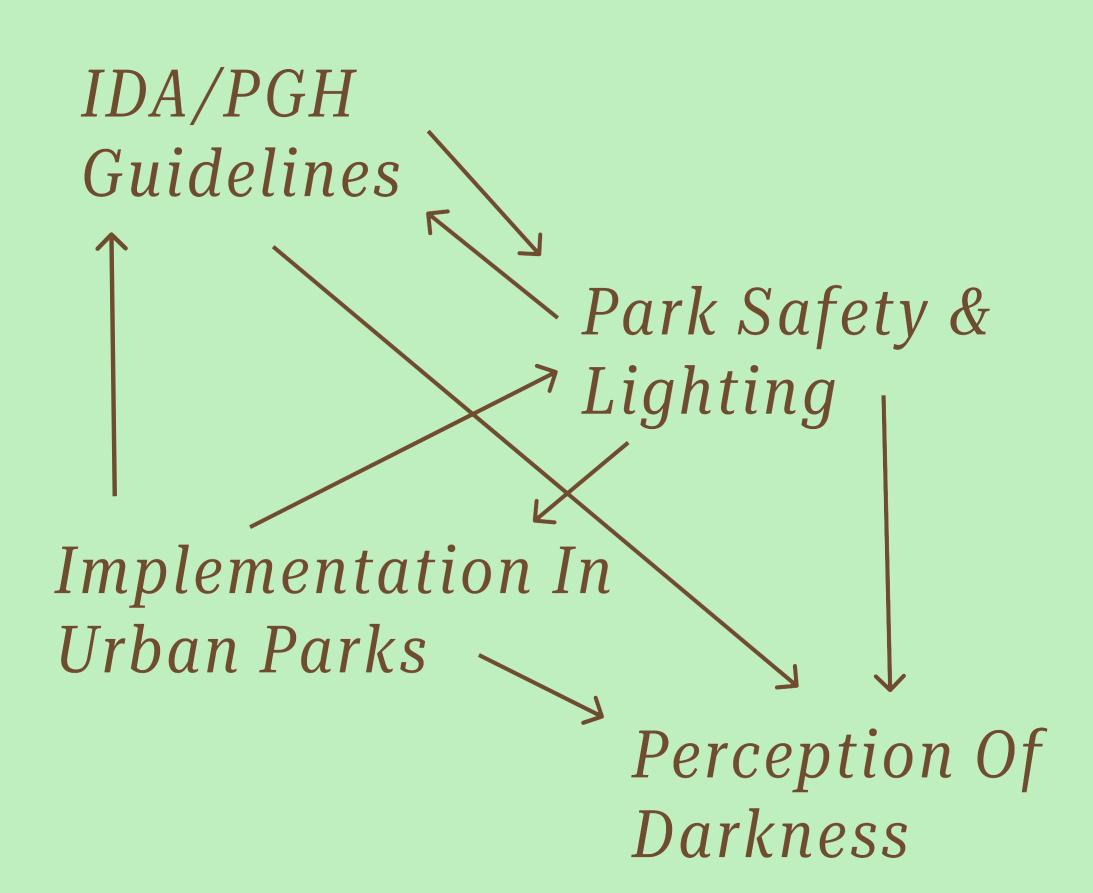
- Ecological rhythms
- Biodiversity

The human need for night

• Health necessity

B

• Passive pleasure


Light domes and city skies:

- Urban brightness
- Stargazing

Section: II

Weeks 3-5

Focused on grounding the project in practical feasibility: studying dark-sky policies, park lighting guidelines, and public safety. I also explored cultural associations with darkness and how design might invite awe, not fear.

Section

Project Goal

Section: III Pinero-Jacome

Storyteller.

This project aims to turn an optimal location in Schenley Park into a place people won't forget.

- Low-impact lighting
- Narrative-driven signage
- QR Voice-over

The final product will be a written proposal to park city officials.

Section | \[\square \]

Site Selection

Weeks 6-7 Pinero-Jacome

Section: IV

Criteria

What Makes A Spot Ideal?

Visibility

Minimal light pollution, clear view of stars

Accessibility

Close to existing trails, parking, and restrooms

Soundscape

Quiet enough for immersion

Section: IV

Large open hill, excellent amenities. High light pollution due to excess street lamps, very little tree cover. Too exposed, lacks visual or emotional separation from city lighting

B Overlook Shelter

Fewer light sources, darker at night, restroom nearby. Access to road closed, no trail connection, limited parking. Hard to integrate into walking experience

Visitor Center

Near Panther Hollow, enclosed in dense tree canopy, pitch black at night, isolated with no city skyline, stars visible through natural 'sky window', not ADA-accessible

Pinero-Jacome

Section: IV

Bortle Scale & Calculations

Spreadsheet --> Visual Studio Code

```
PROBLEMS OUTPUT DEBUG CONSOLE TERMINAL PORTS

PS C:\Users\david> & C:/Users/david/AppData/Local/Microsoft/WindowsApps/python3.11.exe

Optimal Site Ranking:

1. Visitor Center - Score: 23.62

2. Overlook Shelter - Score: 9.60

3. Oval - Score: 1.70

PS C:\Users\david>
```

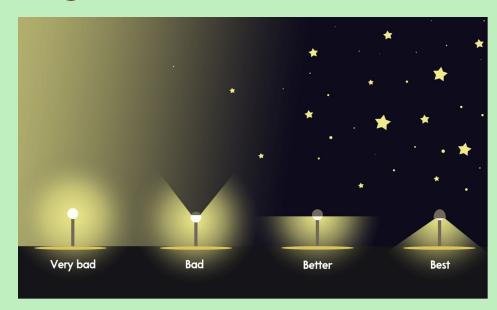
```
"SQM": 19.33,
             "SQM": 19.2,
             "NELM": 6.64,
22
             "SQM": 21.17,
             "TreeDensity": 5,
     weights = {
         "NELM": 2.0,
         "SQM": 2.0,
         "Amenities": 1.0,
         "Accessibility": 1.0,
     def score site(site):
         score += weights["NELM"] * site["NELM"]
         score += weights["SQM"] * site["SQM"]
         score += weights["TreeDensity"] * site["TreeDensity"]
         score += weights["Amenities"] * site["Amenities"]
         score += weights["Accessibility"] * site["Accessibility"]
         score -= weights["Noise"] * site["Noise_dB"]
         return score
     ranked_sites = sorted(sites, key=score_site, reverse=True)
     print("Optimal Site Ranking:")
    for i, site in enumerate(ranked_sites, 1):
        print(f"{i}. {site['name']} - Score: {score_site(site):.2f}")
```

	A	В	C	D	E	F	G	Н	1	
1	Location	NELM	SQM	Moon Phase	Approx Bortle Class	Tree Density (1-5)	Amenities (1-5)	Accessibility (1-5)	Noise (dB)	
2	Overlook Shelter	5.72	19.33	15%	4 - Rural/Surburan	3	3	3		34
3	Oval	5.65	19.2	15%	5 - Suburban sky	1	5	4		39
4	Visitor Center	6.64	21.17	15%	5 - Suburban sky	5	4	3		31

Section: IV Pinero-Jacome

Final Site Selection

Visitor Center - Panther Hollow Trail


Section V

Design

Section: V Pinero-Jacome

Implementations

Lights

Backed by IDA.

Signage

Wrote with storytelling in mind.

Narration

Script narrated by AI (or IDA representative)

Section \(\square \)

Lessons Learned

Designing For Darkness Taught Me That User Experience, How People Feel, Move, And Wonder In A Space, Is Just As Important As Sky Quality In Reconnecting Communities With The Night.

Section \| \|

References

Section: VII Pinero-Jacome

References

- 1. International Dark-Sky Association. (2022). Outdoor Lighting Basics. https://www.darksky.org
- 2. International Dark-Sky Association. (2022, May 2). The Promise and Challenges of LED Lighting: A Practical Guide. https://darksky.org/news/the-promise-and-challenges-of-led-lighting-a-practical-guide/
- 3. Falchi, F., et al. (2016). The new world atlas of artificial night sky brightness. Science Advances
- 4. Gaston, K. J., et al. (2012). Reducing the ecological consequences of night-time light pollution. Journal of Applied Ecology
- 5. Kyba, C. C. M., et al. (2017). Artificially lit surface of Earth at night increasing in radiance and extent. Science Advances
- 6. Meier, A., & Reinecke, L. (2021). Computer-mediated communication, social interaction, and well-being: A meta-analysis. Communication Research
- 7. International Dark-Sky Association. (2016, June 10). 80% of World Population Lives Under Skyglow, New Study Finds.
- 8. AstroBackyard. (2025). Understanding the Bortle Scale. https://astrobackyard.com/bortle-scale

- 9. City of Los Angeles Bureau of Street Lighting. (2020). Lighting Design Guidelines: Griffith Park.
- 10. International Dark-Sky Association. (2022). Tucson: First IDA Community. https://www.darksky.org/our-work/conservation/idsp/communities/tucson-az/
- 11. International Dark-Sky Places Program Recognizes communities and parks that preserve natural night skies. (IDA, 2024)
- 13. Sky & Telescope. (2001). The Bortle Dark-Sky Scale: Measuring Sky Brightness with the Naked Eye. Published in collaboration with John E. Bortle.

Images:

Sketches generated with OpenAI DALL·E 3.

Pittsburgh Parks Conservancy. (2024). Schenley Park Projects. Retrieved from https://pittsburghparks.org/schenley-park-projects/

ArchDaily. (2022). How to Reduce Light Pollution With Street Light Design. From https://www.archdaily.com/977131/how-to-reduce-light-pollution-with-street-light-design

Thank You!